В учебном пособии приводятся основные свойства интегралов Фурье. Пара преобразований Фурье выводится посредствам обобщения ряда Фурье, которое осуществляется путем предельного перехода от конечного отрезка на всю числовую ось (–∞, +∞). Подробно рассматриваются особенности преобразований Фурье финитных функций. При этом важную роль играют формулы, выражающие разложения производных. Они получаются такими, что формула для всякой высшей производной учитывает граничные значения, как самой функции, так и всех предыдущих низших производных. Это свойство позволяет решать с помощью разложений Фурье граничные задачи для дифференциальных уравнений, поставленные для конечных областей. Разобраны различные примеры на применение этого свойства: граничные задачи для простейших обыкновенных дифференциальных уравнений на конечных отрезках, граничные задачи для уравнений в частных производных – уравнения теплопроводности и уравнения Лапласа. Предназначено для использования в качестве дополнительного учебного материала для студентов старших курсов и аспирантов НИТУ «МИСиС» всех специальностей. Это и многое другое вы найдете в книге Интеграл Фурье и его приложения (Н. Е. Цапенко)