В учебнике (Т. I - 1993 г.), написанном в соответствии с утвержденной программой курса, излагаются теория числовых и функциональных рядов, включая степенные ряды Фурье; теория несобственных интегралов, зависящих от параметра, включающая интегралы Фурье ипреобразования Фурье. Даются теория кратных интегралов Римана (в том числе и несобственных), а также элементы теории интегрирования дифференциальных форм на дифференцируемых многообразиях с краем (включая формулы Стокса и основные понятия векторного анализа). Материал излагается с учетом современной тенденции проникновения в анализ методов линейной алгебры и дифференциальной топологии. Для студентов университетов, обучающихся по специальностям `Математика`, `Прикладная математика и информатика`. Это и многое другое вы найдете в книге Курс математического анализа. Том II (Л. И. Камынин)