Who will remain a loyal customer and who won"t? Which messages are most effective with which segments? How can customer value be maximized? This book supplies powerful tools for extracting the answers to these and other crucial business questions from the corporate databases where they lie buried. In the years since the first edition of this book, data mining has grown to become an indispensable tool of modem business. In this latest edition, Linoff and Berry have made extensive updates and revisions to every chapter and added several new ones. The book retains the focus of earlier editions-showing marketing analysts, business managers, and data mining specialists how to harness data mining methods and techniques to solve important business problems. While never sacrificing accuracy for the sake of simplicity, Linoff and Berry present even complex topics in clear, concise English with minimal use of technical jargon or mathematical formulas. Technical topics are illustrated with case studies and practical real-world examples drawn from the authors" experiences, and every chapter contains valuable tips for practitioners. Among the techniques newly covered, or covered in greater depth, are linear and logistic regression models, incremental response (uplift) modeling, naive Bayesian models, table lookup models, similarity models, radial basis function networks, expectation maximization (EM) clustering, and swarm intelligence. New chapters are devoted to data preparation, derived variables, principal components and other variable reduction techniques, and text mining.
After establishing the business context with an overview of data mining applications, and introducing aspects of data mining methodology common to all data mining projects, the book covers each important data mining technique in detail. Это и многое другое вы найдете в книге Data Mining Techniques (Gordon S. Linoff, Michael J. A. Berry)