Методами численного решения двумерных и трехмерных задач механики изучаются критические состояния равновесия оболочек из композиционных материалов, процессы концентрации и релаксации напряжений, локализации деформаций и накопления повреждений в мезообъемах структурно-неоднородных сред под действием квазистатических нагрузок и нестационарных тепловых полей. Модифицирован вариационно-разностный метод расчета изотермических деформаций структурно-неоднородных материалов на основе комбинированной модели упруговязкопластической среды. Для решения связанных задач термопластичности предложена численная модель, основанная на вариационных уравнениях инкрементальной теории пластичности и теплопроводности. Это и многое другое вы найдете в книге Численное решение некоторых квазистатических задач мезомеханики (О. И. Черепанов)