Книга содержит изложение ряда вопросов дифференциальной геометрии в целом: на основании дифференциальных свойств компактного риманова многообразия даются оценки для его чисел Бетти; полученные результаты прилагаются затем к исследованию пространств полупростых групп Ли и кэлеровых многообразий. В начале книги изложены необходимые для дальнейшего факты из тензорного анализа и римановой геометрии (при этом почти не применяется аппарат внешних форм); в книге сформулированы без доказательств некоторые используемые в ней теоремы из топологии дифференциальных многообразий со ссылками на соответствующую литературу. Книга рассчитана на научных работников, аспирантов и студентов, работающих в области дифференциальной геометрии. Это и многое другое вы найдете в книге Кривизна из числа Бетти (К. Яно, С. Бохнер)