Динамические процессы, как раздел прикладной математики, постоянно получают новые инструменты исследования, которые более адекватно отражают реальные зависимости. Таким новым инструментом за последние 50 лет стали обыкновенные дифференциальные уравнения с отклоняющимся аргументом, а точнее, их наиболее изученная часть - уравнения с последействием. Так как реакция практически любой системы запаздывает на возбуждающее воздействие, то и балансовые соотношения, на которых, как правило, базируется модель, включают состояние системы в различные моменты времени. Это приводит к динамическим моделям более сложной структуры, чем обыкновенные дифференциальные уравнения.
Данный курс лекций направлен на освоение основной техники использования дифференциальных уравнений с последействием в задачах построения решений, исследования решений на устойчивость, поиска периодических решений и анализа управляемой динамики. В качестве прикладных моделей в курсе рассмотрены управление техническими объектами, биологические и экономические системы.
Учебное пособие предназначено для студентов технических, инженерных и экономических специальностей. Это и многое другое вы найдете в книге Динамические модели с запаздыванием и их приложения в экономике и инженерии (А. В. Прасолов)