Книга поможет осознанно и эффективно работать с моделями машинного обуче-ния. Дано введение в интерпретацию машинного обучения: раскрыты важность темы, ее ключевые понятия и проблемы. Рассмотрены методы интерпретации: модельно-агностические, якорные и контрфактические, для многопеременного прогнозирования, а также визуализации сверточных нейронных сетей. Раскрыты вопросы настройки на интерпретируемость: отбор и конструирование признаков, ослабление систематического смещения и причинно-следственный вывод, монотонные ограничения, настройка моделей и устойчивость к антагонизму. Показаны перспективы развития интерпретируемых моделей машинного обучения. Каждая глава книги включает подробные примеры исходного кода на языке Python.На сайте издательства размещен архив с цветными иллюстрациями. Это и многое другое вы найдете в книге Интерпретируемое машинное обучение на Python (Не указан)