Популярно и увлекательно освещены современные возможности анализа данных и машинного обучения, являющегося трендом современной компьютерной аналитики. В изложении упор сделан на понимании методов и их применении к практическим задачам. "Делайте вслед за нами, и вы научитесь анализировать данные!" - основной лейтмотив книги. Подробно описаны классические статистические методы, включая многомерные методы: кластерный, дискриминантный анализ, множественная регрессия, факторный анализ, метод главных компонент, анализ выживаемости и регрессия Кокса. В отдельных главах изложены нейросетевые методы, методы добычи данных, деревья классификации и регрессии (CART - модели). Рассмотрены примеры из различных областей человеческой деятельности: промышленности, ритейла, инфокоммуникаций, бизнеса, медицины. Специальные главы посвящены теории вероятностей и методам оптимизации, лежащим в основе методов машинного обучения. Книга отражает многолетний опыт автора в решении прикладных задач и участия в значимых проектах. Синтез современных технологий и понимание методов позволяет добиться успеха в решении конкретных прикладных задач.Для широкого круга читателей: инженеров, технологов, менеджеров, аналитиков, врачей, исследователей, интересующихся современными аналитическими методами и технологиями анализа данных и машинного обучения и их применением на практике. Это и многое другое вы найдете в книге Популярное введение в современный анализ данных и машинное обучение на STATISTICA (Боровиков Владимир Павлович)