В этом практическом руководстве описаны современные технологии анализа данных временных рядов и приведены примеры их практического использования в самых разных предметных областях. Оно призвано помочь в решении наиболее распространенных задач исследования и обработки временных рядов с помощью традиционных статистических методов и наиболее популярных моделей машинного обучения. В своей книге Эйлин Нильсен рассматривает самые распространенные и доступные инструменты анализа временных рядов, включенные в программные пакеты языков R и Python, которые могут применяться специалистами по работе с данными и разработчиками программного обеспечения для написания собственных эффективных решений. Это и многое другое вы найдете в книге Практический анализ временных рядов. Прогнозирование со статистикой и машинное обучение (Нильсен Эйлин)