Выдающийся ресурс для изучения машинного обучения. Вы найдете здесь ясные и интуитивно понятные объяснения, а также обилие практических советов.Франсуа Шолле, автор библиотеки Keras, автор книги Deep Learning with PythonЭта книга - замечательное введение в теорию и практику решения задач с помощью нейронных сетей; я рекомендую ее всем, кто заинтересован в освоении практического машинного обучения.Пит Уорден, руководитель команды мобильной разработки TensorFlowБлагодаря серии выдающихся достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на данных. Новое издание книги-бестселлера, опирающееся на конкретные примеры, минимум теории и готовые фреймворки Python производственного уровня, поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем.Вы освоите широкий спектр методик, которые можно быстро задействовать на практике. Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования. Весь код доступен на GitHub. Он был обновлен с учетом TensorFlow 2 и последней версии Scikit-Learn.Особенности книгиИзучите основы машинного обучения на сквозном проекте с применением Scikit-Learn и PandasПостройте и обучите нейронные сети с многочисленными архитектурами для классификации и регрессии, используя TensorFlow 2Ознакомьтесь с выявлением объектов, семантической сегментацией, механизмами внимания, языковыми моделями, порождающими состязательными сетями и многим другимИсследуйте Keras API - официальный высокоуровневый API-интерфейс для TensorFlow 2Запускайте в производство модели TensorFlow с применением Data API из TensorFlow, стратегий распределения, TF Transform и TF ServingРазвертывайте модели на платформе AI Platform инфраструктуры Google Cloud или на мобильных устройствахИспользуйте методики обучения без учителя, такие как понижение размерности, кластеризация и обнаружение аномалийСоздавайте автономные обучающиеся агенты с помощью обучения с подкреплением, в том числе с применением библиотеки TF-AgentsКнига обсуждается в отдельном сообщении в блоге Виктора Штонда.Об автореОрельен Жерон - консультант и инструктор по машинному обучению.Бывший работник компании Google, с 2013 по 2016 год он руководил командой классификации видеороликов YouTube. С 2002 по 2012 год он также был основателем и руководителем технического отдела в компании Wifirst (ведущего поставщика услуг беспроводного доступа к Интернету во Франции).2-е издание. Это и многое другое вы найдете в книге Прикладное машинное обучение с помощью Scikit-Learn, Keras и TensorFlow. Концепции, инструменты (Орельен Жерон)