Книга посвящена кругу задач, связанных с описанием множества решений уравнения третьей степени от многих переменных. На геометрическом языке это — вопрос об описании точек на кубической гиперповерхности с координатами в данном поле. В классическом одномерном случае на этот вопрос отвечает теория эллиптических кривых. Построению многомерного варианта была посвящена серия журнальных работ автора, результаты которых, систематизированные и расширенные, излагаются в монографии. Кроме этого, книга содержит введение в теорию одного класса неассоциативных алгебраических структур (лупы Муфанг), современное изложение теории 27 прямых на кубической поверхности и ее связи с группами Вейля и новый подход к теоретико-числовому принципу Минковского — Хассе. Это и многое другое вы найдете в книге Кубические формы (Ю. И. Манин)