Приведены определения вероятности случайных событий и соотношения, связанные с условными вероятностями и схемой Бернулли; типы случайных величин, их числовые и функциональные характеристики; закон больших чисел и центральная предельная теорема; сведения о марковских случайных процессах и цепях Маркова с дискретным и непрерывным временем, стохастических интегралах и дифференциальных уравнениях. Рассмотрены вопросы применения случайных процессов; основные распределения, применяемые в статистике; проверка простых и сложных гипотез; последовательный и дисперсионный анализ; линейные регрессионные модели. Даны решения более 130 различных типов примеров и более 800 задач для самостоятельного решения. Для студентов учреждений высшего образования по физико-математическим специальностям. Будет полезен маги�... Это и многое другое вы найдете в книге Теория вероятностей и математическая статистика (М. А. Маталыцкий, Хацкевич Г.А.)