Книга посвящена основам теории обыкновенных линейных дифференциальных операторов и некоторым ее приложениям. Она состоит из двух частей. В более элементарной первой части изложены: основные понятия и основные задачи теории дифференциальных операторов, асимптотическое поведение собственных значений и собственных функций и теоремы о разложении по собственным и присоединенным функциям, обобщения этих результатов на дифференциальные операторы в пространстве вектор-функций. В основном здесь применяются классические методы, в частности, методы теории аналитических функций. Во второй части указанные методы сочетаются с методами функционального анализа. В ней изложены: необходимые сведения из теории линейных операторов в гильбертовом пространстве в удобной для дальнейшего форме, основные факты теории симметрических дифференциальных операторов и их расширений, спектральная теория самосопряженных операторов, различные теоремы об индексе дефекта и спектре этих операторов, решение обратной задачи спектрального анализа для операторов второго порядка. Во третьем издании книги изложение во многих местах переработано и дополнено новыми результатами и многочисленными литературными указаниями о различных усилениях ряда теорем в основном тексте. Добавлен ряд новых примеров, значительно расширена библиография и включено добавление "Несамосопряженный дифференциальный оператор второго порядка на полуоси" о сингулярных несамосопряженных операторах второго порядка. Это и многое другое вы найдете в книге Линейные дифференциальные операторы (М. А. Наймарк)