В рамках математического учения о гармонии в широком междисциплинарном аспекте рассматриваются теоретические и прикладные вопросы последовательностей типа Фибоначчи, основанные на синтезе математических и математико-лингвистических представлений о гармонии. Математический инструментарий этого учения представлен сведениями из теории рекурсий, алгебраических уравнений, непрерывных дробей и пропорций, а сущностные характеристики и формы проявления гармонии человека и мира представлены развернутыми примерами из области генетики, физики, химии, филлотаксиса, филологии, архитектуры, астрономии и других направлений гуманитарных и естественных наук.Для студентов обучающихся по направлениям "Прикладная математика и информатика", "Лингвистика", а также для экономистов, социологов, инженеров, филологов, ботаников, архитекторов и других специалистов, интересующихся вопросами математической гармонии объектов произвольной природы. Это и многое другое вы найдете в книге Последовательности типа Фибоначчи. Теория и прикладные аспекты. Учебное пособие (Ю. Д. Григорьев, Г. Я. Мартыненко)