Functional verification is a widespread technique to check whether a hardware system satisfies a given correctness specification. As the complexity of modern hardware systems rises rapidly, it is a challenging task to find appropriate techniques for acceleration of this process. This thesis introduces a design of a verification framework that exploits the field-programmable gate array (FPGA) technology for cycle-accurate acceleration of simulation-based verification, while retaining the possibility to run verification also in the user-friendly debugging environment of a simulator. The presented framework is written in SystemVerilog and complies with the principles of functional verification methodologies (OVM, UVM) as well as assertion-based verification, making its application range quite large. According to the experiments carried out on a prototype implementation, the achieved acceleration is proportional to the number of checked transactions and the complexity of the verified... Это и многое другое вы найдете в книге Hardware Accelerated Functional Verification (Marcela Simkova)