Design of Adaptive Equaliser Structures in Neural Network Paradigm Susmita Das

Подробная информация о книге «Design of Adaptive Equaliser Structures in Neural Network Paradigm Susmita Das». Сайт не предоставляет возможности читать онлайн или скачать бесплатно книгу «Design of Adaptive Equaliser Structures in Neural Network Paradigm Susmita Das»

Susmita Das - «Design of Adaptive Equaliser Structures in Neural Network Paradigm»

О книге

Adaptive channel equalisers compensate the disruptive effects caused by band-limited channels, hence enabling higher data rate in digital communication. Designing efficient equalisers based on low structural complexity is an area of interest amongst communication system designers. This research has significantly contributed to the development of novel equaliser structures in the neural network paradigm on the framework of both the feedforward neural network and the recurrent neural network of low structural complexity. Various innovative techniques like hierarchical knowledge reinforcement, genetic evolutionary concept, transform domain approach, tuning of sigmoid slope of neuron using fuzzy logic concept have been incorporated into an FNN framework to design highly efficient equaliser structures. Subsequently, an hybrid concept of using cascaded modules of RNN and FNN in various configurations has also been proposed. Significant performance improvement over the... Это и многое другое вы найдете в книге Design of Adaptive Equaliser Structures in Neural Network Paradigm (SUSMITA DAS)

Полное название книги Susmita Das Design of Adaptive Equaliser Structures in Neural Network Paradigm
Автор Susmita Das
Ключевые слова электротехника, энергетика, использование электроэнергии, энергоснабжение
Категории Образование и наука, Технические науки
ISBN 9783838321042
Издательство
Год 2009
Название транслитом design-of-adaptive-equaliser-structures-in-neural-network-paradigm-susmita-das
Название с ошибочной раскладкой design of adaptive equaliser structures in neural network paradigm susmita das