Книга посвящена всестороннему описанию вероятностных математических моделей хаотических процессов и методов их статистического анализа. Рассматривается удобный класс математических моделей стохастических хаотических процессов - подчиненные винеровские процессы (процессы броуновского движения со случайным временем). В качестве аргументации в пользу указанных моделей используется асимптотический подход, основанный на предельных теоремах для обобщенных дважды стохастических пуассоновских процессов (обобщенных процессов Кокса), которые в определенном смысле являются наилучшими математическими моделями неоднородных (и даже нестационарных) хаотических потоков на временных микромасштабах. Такой подход приводит к тому, что распределения приращений рассматриваемых процессов имеют вид сдвиг/масштабных смесей нормальных законов, и дает возможность получить не только сами формальные вероятностные модели хаотических стохастических процессов, но и в некотором смысле дать разумное... Это и многое другое вы найдете в книге Вероятностно-статистические методы декомпозиции волатильности хаотических процессов (В. Ю. Королев)