В монографии изложены основные идеи и методы, связанные с разработкой численных моделей в краевых задачах электродинамики СВЧ-диапазона, а также цифровой обработки сигналов и изображений. Она состоит из четырех глав. В первой и второй главах получены решения различных видов частотно-пространственных интегральных уравнений (ИУ) для пленарных, квазипланарных структур, исследована дифракция электромагнитных импульсов на двух- и трехмерных металлических и диэлектрических телах, на щелях и отверстиях в идеально проводящем экране. В третьей главе представлены и обоснованы алгоритмы построения нового класса ортогональных вейвлетов Кравченко на основе атомарных функций (АФ) и новый метод численного дифференцирования, основанный на использовании WA-систем функций. В четвертой главе описаны конструкции ортогональных вейвлетов на основе АФ ha(x). Показаны преимущества нового класса аналитических вейвлетов Кравченко-Рвачева (АКР-вейвлетов) перед вейвлетами Добеши, Морле, Шеннона и других для анализа сверхширокополосных (СШП) сигналов. Представлен новый подход, основанный на комбинациях АФ в сочетании с классическими спектральными ядрами. Показано, что эти конструкции спектральных ядер, используемые при передаче и приеме информации, имеют преимущества перед уже известными в задачах спектрального анализа СШП сигналов.
Для научных работников, аспирантов и студентов старших курсов радиофизических и радиотехнических специальностей, работающих в области вычислительной математики и физики. Это и многое другое вы найдете в книге Вычислительные методы в современной радиофизике (В. Ф. Кравченко, О. С. Лабунько, А. М. Лерер, Г. П. Синявский)