Классическая (шенноновская) теория информации измеряет количество информации, заключенной в случайных величинах. В середине 1960-х годов А.Н.Колмогоров (и другие авторы) предложили измерять количество информации в конечных объектах с помощью теории алгоритмов, определив сложность объекта как минимальную длину программы, порождающей этот объект. Это определение послужило основой для алгоритмической теории информации, а также для алгоритмической теории вероятностей: объект считается случайным, если его сложность близка к максимальной.
Предлагаемая книга содержит подробное изложение основных понятий алгоритмической теории информации и теории вероятностей, а также наиболее важных работ, выполненных в рамках колмогоровского семинара по сложности определений и сложности вычислений, основанного А.Н.Колмогоровым в начале 1980-х годов.
Книга рассчитана на студентов и аспирантов математических факультетов и факультетов теоретической информатики. Это и многое другое вы найдете в книге Колмогоровская сложность и алгоритмическая случайность (Н. К. Верещагин, В. А. Успенский, А. Шень)