![]()
Газовые взрывы в Словаре Брокгауза и Ефрона
могут получиться только с такими газами, которые представляют или механические смеси, содержащие в себе, с одной стороны, элементы горючие (углерод, водород и т. п.), с другой — поддерживающие горение (кислород, хлор); или однородные химические соединения, способные распадаться на элементы со значительным отделением тепла (см. Взрывчатые вещества). Для изучения Г. взрывов служили главным образом смеси водорода H2, окиси углерода СО и болотного газа СН4с кислородом или с воздухом, дающие при воспламенении воду Н2O и углекислоту СО2с огромным отделением тепла Q (на граммовую частицу, в больших или килограммовых калориях).
------------------------------------------------------------------------------------------| H2 + О = Н2О (жид.) | Q = 69,0 кал. ||----------------------------------------------------------------------------------------|| СО + О = СО2 | 68,2 кал. ||----------------------------------------------------------------------------------------|| СН4 + 2О2 = СО2 + 2Н2О (жид.) | 213,5 кал. |------------------------------------------------------------------------------------------В предлагаемой статье рассматриваются: I) пределы воспламеняемости, II) температуры воспламенения, III) скорость взрывов, IV) давления при взрывах и V) взрывы смесей светильного газа с воздухом, применяемые в газовых двигателях.
I) Пределы воспламеняемости. Г. взрывы вызываются местным возвышением температуры, напр., с помощью накаленного тела, зажигательного стекла, электрической искры и т. п. Но для этого количественный состав смесей не должен выходить из известных пределов. В самом деле, если разведем вышеуказанные взрывчатые смеси большим избытком одного из взятых газов или другим инертным газом, то температуры, развивающиеся в слоях, ближайших к точке воспламенения, вследствие значительной затраты тепла для нагревания не участвующего в горении газа могут опуститься ниже температуры воспламенения смеси, и распространение Г. взрыва на всю массу станет невозможным. Следовательно, для каждой смеси существуют определенные пределы воспламеняемости. Так, по опытам Гей-Люссака, Деви, Бунзена и др., водородный гремучий газ (Н2+ О) перестает взрывать, когда к 3 объемам его примешаны 27 объемов кислорода или 24 объема водорода, или: 18 объемам азота, 12 об. окиси углерода, 9 об. углекислого газа, 6 объемов сернистого газа, 3 объема болотного газа и т. п.; смесь окиси углерода с кислородом (СО + О) перестает взрывать при разбавлении 3 объемов ее 10 объемами окиси углерода или 29 объемами кислорода; смесь 2 об. болотного газа с 11 объемами воздуха — при увеличении пропорции последнего до 17 — 20 объемов и пр. Расчет показывает, однако, что одной охлаждающей способности газов, присутствующих в избытке, недостаточно для объяснения замечаемого в приведенных примерах различия пределов; необходимо допустить еще специальное влияние натуры примешанных газов.
По мере приближения к пределам воспламеняемости, горение основной (нормальной) смеси делается неполным, что явствует, напр., из наблюдений Гей-Люссака над сжатием после взрыва водородного гремучего газа, разбавляемого кислородом: пока на 3 объема гремучего газа приходится не более 17 объемов кислорода, сжатие равно 3 объемам, т. е. такое же, как в отсутствии избытка кислорода; но при 18 объемах избытка кислорода сжатие уже 1,4 объема, и затем стремится к нулю. Пределы воспламеняемости могут отчасти отодвигаться в ту или другую сторону, в зависимости от способа воспламенения, и особенно от температуры и массы прикасающегося накаленного тела. Сверх того, Деви показал, что смеси, воспламеняющиеся при обыкновенной их плотности, перестают воспламеняться, если сильно уменьшить их плотность; так, электрическая искра не воспламеняет водородного гремучего газа, взятого при плотности, в 18 раз меньшей сравнительно с обыкновенной, т. е. разрежение оказывает такое же влияние, как и разбавление не участвующими в горении газами. Смеси воздуха с болотным газом, выделяющимся в рудниках, могут воспламениться, по опытам Деви, при изменении содержания болотного газа от 6% до 24%; ниже 6% слишком в большом избытке находится воздух, а выше 24% — болотный газ.
II. Температуры воспламенения. Распространение горения при Г. взрывах основано на существовании определенных температур, необходимых для воспламенения газовой смеси. Деви показал, что железная проволока около 0,65 мм толщиною воспламеняет водородный гремучий газ уже при темно-красном калении; для воспламенения же смеси окиси углерода с кислородом она должна быть нагрета до красного каления, а рудничный гремучий газ не всегда воспламеняется даже при белом ее калении. Для измерения температур воспламенения Ле Шателье и Малляр употребляли фарфоровый, нагреваемый в газовой печи Перро, пирометр, который служил то как воздушный термометр, то как камера для взрыва, для чего он был снабжен стеклянным краном с двумя каналами, позволявшими приводить его в сообщение попеременно с воздушным насосом и градуированными трубками, содержавшими воздух или гремучую смесь. Установив по возможности постоянную температуру в печи, измеряли ее, наполнив прибор воздухом; затем тотчас же, удалив воздух выкачиванием, вводили исследуемую гремучую смесь; воспламенение узнавалось по звуку взрыва или по изменению объема газа; после взрыва тотчас же снова заменяли газ воздухом и опять измеряли температуру печи; средняя величина ее отмечалась. Если взрыв не происходил, то в следующем опыте давали несколько высшую температуру; если же происходил — бралась несколько низшая температура. и т. д., пока не получались достаточно узкие пределы температур.
----------------------------------------------------------------------------------------------| Смеси | Пределы темп. || | воспламенения ||---------------------------------------------------------------------------------------------|| 2 об. Н + 1 об. О | 560 — 570° ||---------------------------------------------------------------------------------------------|| 2 " Н + 4 " О | 530 — 532° ||---------------------------------------------------------------------------------------------|| 2 " Н + 4 " воздуха | 552 — 553° ||---------------------------------------------------------------------------------------------|| 2 " Н + 1 " О + 3 об. СО2 | 562 — 592° ||---------------------------------------------------------------------------------------------|| 5 " СО + 1 " О | 630 — 650° ||---------------------------------------------------------------------------------------------|| 2 " СО + 1 " О | 645 — 650° ||---------------------------------------------------------------------------------------------|| 2 " СО + 4 " воздуха | 650 — 657° ||---------------------------------------------------------------------------------------------|| 2 " СО + 1 " О + 3 об. СО2 | 695 — 715° ||---------------------------------------------------------------------------------------------|| 2 " СН4 + 4 " О | 630 — 650° ||---------------------------------------------------------------------------------------------|| 2 " СН4 + 1 " О | 650 — 660° ||---------------------------------------------------------------------------------------------|| 2 " СН4 + 18 " воздуха | 650 — 750° |----------------------------------------------------------------------------------------------Из этих чисел следует: а) температура воспламенения гремучих газов мало изменяется даже от большой примеси посторонних газов; более значительно лишь влияние углекислоты на смеси, содержащие окись углерода. б) Гремучие смеси, содержащие окись углерода, взрывают при значительно высшей температуре, чем водородные. Кроме того, Малляр и Ле Шателье заметили, что смеси, содержащие СО и СН4, при более низких температурах, показывают явления медленного горения; напр., смесь 2 об. СО + 1 об. О горит уже около 480° со скоростью 0,01% в секунду. Смеси, содержащие болотный газ, проявляют еще способность взрываться, при известных температурах, лишь по истечении известного промежутка времени — тем большего, чем ниже температура, в то время как смеси с водородом или окисью углерода взрывают непосредственно; так, замедление около 800° составляет 5 — 6 секунд и делается неощутимым лишь около 1000°. Температура воспламенения определяется не только составом газовой смеси, но также присутствием (прикосновением, контактом) некоторых особых тел, действующих своею поверхностью подобно нагреванию. Такие тела вообще понижают температуру Г. взрыва. Особенно ясно влияют тела пористые, порошковатые, обладающие большой поверхностью. Можно принимать, что это зависит от того, что на поверхности таких тел происходит довольно сильное сжатие тонкого слоя газа, благоприятствующее соединению смешанных газов и их нагреванию. Наибольшим контактным действием обладают палладий, платина и уголь. Платиновая проволока воспламеняет водородный гремучий газ при слабом нагревании, губчатая платина — при обыкновенной температуре, а в мелко раздробленном состоянии, в каком она находится, напр., в пепле бумаги, напитанной перед сожжением так называемой нашатырной платиной (PtCl4.2NH4Cl), даже при холоде — 20°. Уголь производит воспламенение при 350°. Проф. Коновалов показал, что подобное влияние на химические превращения производится также стеклом и стенками всяких сосудов, употребляемых при опытах, хотя и в гораздо более слабой степени. Из сказанного о понижении температур воспламенения действием контакта следует, что числовые данные Малляра и Ле Шателье имеют значение только в фарфоровых сосудах. Это заключение подтверждают и расширяют исследования (1892) В. Мейера, произведенные с водородным гремучим газом в стеклянных оболочках. Смесь 2 об. Н + 1 об. О, полученная (электролизом) в возможно чистом состоянии, в запаянных трубках, также очищенных самым тщательным образом, взрывается тотчас при введении этих трубок в сосуд с сильно кипящим хлористым оловом (606°). Но если гремучий газ свободно пропускается через трубку, нагреваемую при той же температуре, то взрыва не бывает, а происходит весьма незначительное медленное окисление, которое в запаянных сосудах может иметь место и при более низких температурах, напр., в парах сернистого фосфора (518°) и серы (448°); в этих условиях, т. е. когда реакция происходит без условий увеличенного давления, для воспламенения необходима высшая температура кипящего хлористого цинка (730°); кипящий же бромистый цинк (650°) не производит взрыва. Откуда точка воспламенения свободно проходящего гремучего газа в стекле лежит между 650° и 730°. Воспламенение газовых гремучих смесей в некоторых случаях обуславливается присутствием водяных паров. По опытам Диксона ("Chem. News", 46, 151), смесь окиси углерода и кислорода, тщательно высушенная фосфорным ангидридом, не взрывает ни искрой от Румкорфовой спирали, ни раскаленной платиновой проволокой; но если прибавить следы влажности, то взрыв происходит тотчас же. Траубе объясняет такую роль малых количеств водяного пара тем, что окисление окиси углерода совершается насчет кислорода воды, водород которой соединяется с присутствующим свободным кислородом в перекись водорода Н2О2; последняя, в свою очередь, может окислять:
СО + Н2О + О2= СО2+ Н2O2;
СО + Н2O2= CO2+ Н2O и т. д.
Действительно, если жечь окись углерода близ поверхности воды, то в последней можно доказать присутствие перекиси водорода. То же самое имеет место и при взрыве водородного гремучего газа: первоначально образуется Н2О2, которая затем распадается на Н2О и О, что гораздо ранее того утверждал проф. Д. И. Менделеев на основании того, что следы перекиси водорода давно найдены (Струве и др.) при многих случаях горения и частичные количества (см. Частицы) водорода и кислорода отвечают как раз Н2O2.