Архимеда аксиома

А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Э Ю Я
Архимеда аксиома в Большой Советской энциклопедии

Архимеда аксиома в Большой Советской энциклопедии

заключается в том, что, повторив достаточное число раз меньший из двух заданных отрезков, мы всегда можем получить отрезок, превосходящий больший из них. То же относится к площадям, объёмам, числам и т. д. Вообще, если А и В суть два значения одной и той же величины, причём А <>В, то всегда можно найти такое целое числом, что Ат > В; на этом основан процесс последовательного деления в арифметике и геометрии (см. Евклида алгоритм). Значение А. а. выяснилось с полной отчётливостью после того, как в 19 в. было обнаружено существование величин, по отношению к которым эта аксиома несправедлива, — т. н. неархимедовых величин (см. Величина).А. а. отчётливо сформулирована Архимедом в сочинении «Шар и цилиндр»; ранее её применял Евдокс Книдский, почему иногда А. а. называют аксиомой Евдокса.

Источник: Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.

Смотрите также